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ABSTRACT: Compressed sensing (CS) sampling theory is applied to the Light Beam Induced Current (LBIC) 

measurement technique in order to significantly reduce measurement time while maintaining or increasing accuracy. 

Using this method, a current map of the device can be reconstructed from far fewer measurements by means of an 

optimisation algorithm. Measurement simulations are implemented using a two dimensional photovoltaic (PV) device 

model to explore the capabilities and limitations of the method. A physical realisation of the technique is demonstrated. 

The raster scanning process of the LBIC system is replaced with a Digital Micro-mirror Device (DMD) pattern 

projection system. Measurement speed is also improved due to the response time of the DMD pattern generator, which 

is less than 20μs. An experimental CS-LBIC setup, alongside with initial experimental results that indicate the 

feasibility of the method are presented. 
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1. INTRODUCTION 

 

Characterisation of devices is key for advancement of 

photovoltaic (PV) technologies. The commercialisation of 

PV leads to larger devices which need to have uniform 

quality over their area. Thus PV device spatial 

characterisation is crucial for the development of this 

technology.  

Well established techniques exist for spatial 

characterisation, such as Electroluminescence (EL) [1], 

Photoluminescence (PL) [2], Lock-In Thermography (LIT) 

[3] and Light Beam Induced Current (LBIC) measurements 

[4]. These methods are complementary to each other and 

each produce different kinds of information.  

The spatial current response of PV cells is 

quantitatively measured using the LBIC method [4][5]. 

Measurements are implemented by applying a point by 

point scan with a collimated light source, producing a 

current map and delivering quantitative information about 

the electrical, optical and material properties of PV cells [6] 

or modules [7]. The spot on the sample that realises the 

scan usually has a size of several micrometres, which 

means that measurements are cumbersome and time-

consuming. The time taken for the scan is really the main 

drawback of LBIC measurements and limits wider 

application of this technique. 

To overcome this issue, the application of the 

Compressed Sensing (CS) sampling theory on LBIC 

measurements is considered in this work. According to this 

theory, one can reconstruct a signal using an incomplete 

measurement dataset [8][9]. For the realisation of CS-LBIC 

measurements, instead of a point by point scan, a series of 

pattern - test functions are projected on the sample. The 

current response is measured for each pattern. Fewer 

measurements than points of the final current map are 

taken and the image is reconstructed via optimisation 

algorithms. For the physical implementation of the 

measurement, the generation of the test patterns is achieved 

utilising a Digital Micromirror Device (DMD) [10]. The 

fast response of the DMD kit and the fewer measurements 

needed for acquiring the current map lead to the significant 

reduction of measurement time comparing to standard 

LBIC systems. 

The limitations of this approach are demonstrated here 

based on  simulations using spatially-resolved modelling 

techniques with the PV-Oriented Nodal Analysis 

(PVONA) tools developed in CREST [11]. Several 

different defects were simulated and compared with 

measurements of a prototype CS-LBIC experimental setup 

developed at the National Physics Laboratory (NPL).  

 

2. BACKGROUND THEORY 

2.1 Compressed sensing theory 

 
As for all images, the image of the current map is 

compressible, which means it has a sparse representation 

using an appropriate basis. Images are usually compressed 

to be stored, for example as JPEG files. In this instance, the 

discrete cosine transform (DCT) is applied, after which the 

signal (image) can be described using a very small number 

of coefficients in the transform domain. In JPEG 

compression only the K larger coefficients are kept and the 

rest are put to zero. The aim of compressive sampling is to 

directly measure these K coefficients, acquiring M 

measurements, to reconstruct the N pixel image, where 

K<M<N. As the locations of the K coefficients in the 

transform domain are not known, M is larger than K but 

still, significantly smaller than N. 

A compressed representation of a signal, x, is acquired 

using M<<N linear measurements between x and a set of 

test functions   
 
 
   

 
, forming           

 
  which is the 

actual measurement. The test functions   
 
 
   

 
 are 

represented as rows in a MxN matrix     
 
  
 
  
 
 … 

 
  

and the problem can be written as: 

 

      (1) 

 

As a consequence of y having significantly fewer 

elements than x, there is loss of information. Since M<<N, 

there are infinitely many translations,          . This is 

apparently an underdetermined problem with infinite 

solutions. However, a measurement  atri      can be 

designed such that an almost exact approximation of the 

signal x can be recovered from measurement y, if x is 

sparse or compressible. In practice, few real-world signals 

are truly sparse, although almost all of them are 
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compressible, meaning that they can be well-approximated 

by a sparse signal, or are sparse after a transform [12], 

which  eans their representation with a basis Ψ is sparse.  

The signal reconstruction algorithm must take the M 

measurements in the vector y, the random measurement 

 atri    and the basis Ψ (transfor ); and reconstruct the 

N-length signal x or, equivalently, its sparse coefficient 

vector α, as   Ψα  and       Ψα . The solution to the 

underdetermined problem is the x vector (or more precisely 

the α vector) with the  ini u  ℓ1 norm [13]: 

 

    ar  in     subject to      (2) 

 

Or more precisely 

 

 α  ar  in α   subject to  Ψα   (3) 

 

This is a convex optimization problem that conveniently 

reduces to a linear program known as basis pursuit [9][14].  

 

2.2 Application of compressed sensing on PV 

characterisation  

 

Compressive sampling can be used as an alternative of 

standard LBIC measurements in order to reduce 

measurement time. Instead of a point by point scan a series 

of test functions   
 
 
   

 
have to be projected on the PV 

device. Random binary matrices of ones and zeros can be 

used as patterns, as they are easy to implement and satisfy 

the requirements for compressive sampling [15]. For every 

projected pattern the current response of the PV device is 

measured, populating the measurement vector y, as 

illustrated in figure 1. Since the projected patterns are 

known  constructin  sensin   atri     the  easured 

current map is reconstructed using equation (2) or (3). With 

this method, current maps can be acquired with much fewer 

measurements than what a raster scan would require. 

 

 
 

Figure 1: Diagram of the CS-LBIC measurement 

procedure. A series of random binary patterns is projected 

on the PV device, while the current response for every 

pattern is measured 

 

2.3 PV Oriented Nodal Analysis (PVONA)  

 

PVONA is a software toolset specifically developed for 

solving the spatially-resolved model (SRM) of PV devices. 

A PV cell can be described by a SRM in the form of a 

discrete nonlinear circuit network as shown in Figure 2(a). 

In the SRM, a PV cell is modelled by an array of sub-cells. 

Each local sub-cell corresponds to a finite rectangular-

shaped area of the cell. The nonlinear behaviour of the 

local sub-cells (blocks with an arrow) is described by local 

diode models. The contact schemes are represented by two 

resistor networks.  

 

. 

 
Figure 2: (a) Schematic of the structure of the SRM of a 

PV cell. (b) The layout of the front contact layer of the 

virtual c-Si sample used in this work. 

 

The PVONA toolset can solve this type of SRMs 

efficiently by utilising an optimised parallel solver as 

described in [16]. It allows high-resolution (e.g. mega sub-

cell) simulations of PV cells [11]. 

In this work, a virtual crystalline silicon (c-Si) cell 

(representing a reference cell) is configured for the 

simulation and study of CS-LBIC measurements. The 

layout of the front layer of the sample is illustrated in 

Figure 2(b). The sample consists of 60 × 60 sub-cells. A 

front contact layer is used to model the metal busbar and 

fingers. The busbar occupies 10 columns and each of the 

three fingers occupies one row. The resistance in the back 

contact in neglected. This assumption is valid for c-Si cells 

as discussed in [16]. The single-diode model is used to 

describe local electrical properties and the input parameters 

used are listed in Table 1. Defects can be introduced by 

changing local parameters. For example, a crack can be 

modelled by a series of sub-cells with reduced or zero 

photocurrent Jph and a very high emitter resistance R∎emitter 

value, R∎ being the sheet resistance. 

 

Table 1 Input parameters of the SRM used in this work 

Jph (A/cm2) 0.035  

Jsat (A/cm2) 5.0×10-7  

N 1.4 

Rsh (Ω·c 
2) 8.35×104 

Rs
i (Ω∙c 2) 0.05 

R∎emitter (Ω/⧠) 80.0 

R∎grid (Ω/⧠) 1.0×10-3  

 

The simulation of CS-LBIC experiments is done 

through the irradiance interface provided by the PVONA. 

For each operation, a binary matrix is used to represent the 

pattern projected on the sample. For an illuminated sub-cell, 
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the Jph listed in Table 1 is applied. Otherwise the Jph is set 

to zero for an inactive sub-cell. For each pattern, the short 

circuit current ISC is recorded, populating measurement 

vector y  while each pattern is a row of sensin   atri     

thus the current map is reconstructed by equation (3). 

Random binary matrices are used as patterns and populate 

the sensing matrix, while the discrete cosine transform is 

applied (basis Ψ) to provide the sparse representation 

required. For the reconstruction the ℓ   a ic toolkit in 

MatLab is used, developed by Candès, Romberg and Tao 

[17].  

 

3. SIMULATION RESULTS 

For the implementation of the simulations a series of 

different cell configurations is used. In figure 3 the actual 

current maps of the different simulated samples are 

presented. Current is uniform in all active area of the cell 

and zero at the fingers and busbar. Apart from the sample 

with no defects, three of the configured samples with 

defects have lines of zero current, diagonal, vertical or 

parallel to the fingers, representing crack of different 

orientations. One sample has a dead spot and the last one a 

combination of a dead spot and a crack combining three 

possible orientations of lines. In this last case the current of 

the simulated crack was set to 50% of the current value of 

the active area, to provide a more realistic result. Except 

from the current, a high value of series resistance were also 

set in these defected areas in the SRM. The purpose of the 

different configurations is to investigate the performance of 

CS-LBIC measurements in detecting different types and 

orientations of defects. The different types of configured 

samples are presented in figure 2.  

To evaluate the performance of CS-LBIC 

measurements a comparison has to be made between the 

current maps produced by the simulated CS-LBIC 

measurements and the real known current maps. For this 

purpose Normalised Root Mean Square Error (NRMSE) 

and the correlation coefficient ρ (Pearson’s correlation 

coefficient) are calculated to compare images. NRMSE is 

calculated using: 

 

         
 

  a    in
∙ 

 (  i  i)
  

i  

 
 (4) 

 

Where noted with  i are the elements of the real current 

map,   i  the pixel measurements by CS-LBIC 

measurements, N the number of pixels, which in our case 

are 3600 (60 x 60 current maps) and   a  and   in  the 

maximum and minimum values of the real current map. 

The correlation coefficient is calculated by dividing the 

covariance of the real and measured current map by the 

product of their standard deviations: 

 

 ρ(    )   
cov(    )

   ∙  
 (5) 

 

 

 
 

Figure 3: The different configurations of simulated 

samples with the SRM, for implementation of CS-LBIC 

simulations.60 x 60 pixel current maps were implemented 

for each case. 

 

 

The number of measurements acquired every time with 

the CS-LBIC method is expressed as a percent of the 

number of pixels N. In the given case, a point by point scan 

would need N=3600 measurements to deliver the current 

map. CS-LBIC allows reconstructing a current map with 

fewer measurements. A 30% current map means that it has 

been produced by 1080 measurements. The improvement 

of the reconstruction by acquiring more measurements is 

clear as visible from figure 4.  

In figure 5 the NRMSE and correlation graphs are 

presented as a function of number of acquired 

measurements. It is clear that all configured samples have 

the same behaviour; hence the technique performs in the 

same way for all types of features in PV devices. Above 

30% of measurements correlation coefficient is more than 

0.95 and as presented in figure 3, all features of the cell are 

visible, while the reconstruction NRMSE error is just 

above 10%. Above 40% of measurements the NRMSE 

becomes less than 10% for all samples and adding more 

measurements just makes the image clearer. It has to be 

noted that the real current map in this simulation is an 

extreme, unrealistic case where the current has the exact 

same value in all non-defect areas and the transition from 

active areas to non-active or defected areas is sharp, with 

no intermediate points. Moreover, standard LBIC 

measurements results would still not be identical to the 

current map as it would be affected by measurement noise. 
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Figure 4: CS-LBIC simulation results of the 60x60 pixel 

current map, with increasing number of measurements.   

 

 
Figure 5: Correlation coefficient and NRMSE for all 

configured samples, as a function of number of 

measurements with the CS-LBIC method, compared with 

the real current map. 
 

4. EXPERIMENTAL RESULTS WITH PROTOTYPE 

SYSTEM IN NPL 

An initial prototype has been built in NPL, in order to 

test the feasibility of CS characterization of PV devices. 

The light sources available are a 40mW 658nm laser and a 

100mW 785nm one. A single mode optical fiber delivers 

the light to the optical system. The beam is expanded and 

collimated before the DMD generates the series of patterns 

to be projected on the sample under measurement. The 

DMD array has a 1024x768 resolution, with each 

 icro irror havin  a size of   .7μ  x   .7μ , thus the 

DMD area is approximately 1.4cm by 1cm. A 768 x 768 

area of the DMD is used to create square patterns and as a 

result the projection has a size of 1cm x 1cm. A double two 

lens system and a mirror are used to deliver the projection 

on the sample under test. A schematic diagram of the 

prototype setup is presented in figure 6.  

 

 
 

Figure 6: schematic diagram of the CS LBIC prototype in 

NPL. 

 

An EFG (Edge-Defined, Film-Fed Growth) mc-Si 

encapsulated cell is used to test the experimental setup. An 

EL image of the sample is presented in figure 7, along with 

a 1cm by 1cm area selected for the measurements 

presented in this work. This small area includes similar 

features with the simulated samples, in order to compare 

the initial CS-LBIC measurements results with the 

simulations.  

 

 
Figure 7: EL image of the mc-Si sample used for 

measurements and the 1cm x 1cm area for which results are 

presented in this work. 

 

In figure 8 96x96 pixel current maps produced with the 

785nm laser are presented. Each current map is produced 

applying different number of measurements, which is 

expressed as a percentage of the total number of pixels 

(9216). For instance the 30% current map is acquired by 

applying 2765 measurements, thus, having projected 2765 

patterns on the sample. The improvement of the quality of 
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the current map when adding more measurements has a 

similar behaviour as in the case of the simulations, an 

indication that the physical implementation of the method 

used in the simulations is successful. However, there is a 

significant difference above 90% of measurements. 

Experimental results suggest worst measurement results 

when approaching 100% of measurements, which is what a 

raster scan would need. Reconstruction from 9216 

measurements fails completely. The reason for this is the 

significant amount of noise present in the measurement 

system. No lock-in technique is used as the signal to noise 

ratio is high enough for the implementation of the 

measurements, although these noise levels are very high for 

a realisation of a raster scan. With fewer measurements 

available, the optimisation algorithm is less influenced by 

the noise levels, although when approaching 100% this 

issue becomes important. As simulations have no noise, the 

reconstruction from 100% of measurements is possible in 

that case.  

 

 
 

Figure 8 CS-LBIC measurement results of a 1cm x 1cm 

area of the mc-Si sample. Number of measurements 

acquired are expressed as a ratio of measurements by the 

total number of pixels. 

 

 

All features present in the EL image are visible in the 

reconstructed images from 30% of measurements and 

above. Adding more measurements above 40% has no 

significant improvement, although it makes the image 

slightly clearer. The 785 wavelength laser has a penetration 

depth of only several micrometres from the surface of the 

sample, so the crack does not appear very bold like in the 

EL image, as it is probably mainly located in the bulk of 

the cell. The two spots on the top left of the maps seem to 

be surface effects so they have the same appearance in both 

EL and CS-LBIC images. Measurement results indicate 

that current maps of PV devices can be produced by 

acquiring much fewer measurements than with a standard 

LBIC system.  

There is some distortion in the images due to a 

misalignment of the final projection on the sample, which 

is the reason for the skewed angles of fingers and bus-bars. 

Furthermore, irradiance is not perfectly uniform. This 

configuration is sufficient to demonstrate the feasibility of 

the proposed method but should be improved in the future. 

 

5. CONCLUSIONS  

A method for current mapping of PV devices is 

presented in this paper. The method is based on the 

compressed sensing sampling theory and can significantly 

reduce the measurement time of LBIC measurements for 

PV device characterization. Simulations of CS-LBIC 

measurements have been realised using the PVONA tools. 

The results show that this technique has the same 

performance for all types of features in samples. 

A prototype experimental setup, built at NPL, is 

demonstrated. Measurement results show similar behaviour 

with the si ulations and confir  the  ethod’s applicabilit  

for fast current mapping of PV devices. Although the cell 

area measured in this work is only 1cm by 1cm, the 

projection can be magnified in a straightforward way to 

scan larger areas, or even cells, in order to acquire current 

maps with the same methodology. On the other hand, the 

current setup is ideal for measurements of very small area 

devices usually produced in the research field of thin film 

solar cells and other emerging technologies such as organic 

or perovskite solar cells.  
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