Choosing the best Empirical Model for predicting energy yield

Steve Ransome¹ & Juergen Sutterlueti²

¹Steve Ransome Consulting Limited, London UK ²Gantner Instruments, Austria

7th PVPMC SUPSI Canobbio Switzerland 30-31 Mar 2017

www.steveransome.com

11-Apr-1

Mechanistic Choosing the best Empirical Model for predicting energy yield

Steve Ransome¹ & Juergen Sutterlueti²

¹Steve Ransome Consulting Limited, London UK ²Gantner Instruments, Austria

7th PVPMC SUPSI Canobbio Switzerland 30-31 Mar 2017

Contents of talk

- Summarise the status of common PV models
- Explain empirical models, when can they be useful?
- Compare 10 existing models with Gantner Instruments outdoor measurements data for 3 PV technologies
- Use the models' best points to propose a new "mechanistic model"
- Analyse how it improves on existing models
- Propose further optimisation and additions such as spectral effects

Standard models

11-Apr-1

<u>Curve fits</u> e.g. 1 diode (fit equivalent circuit to IV curve)

- Imperfect traces (e.g. cell mismatch) cause curve fit difficulties
- R_{SHUNT}, R_{SERIES} etc. vary with G₁, T_{MOD} (not defined in model) so can predict incorrect Low light efficiency and gamma

Point modelling e.g. SAPM (I_{SC}, P_{MP}, V_{OC} ...)

- Hard to understand 29 coefficients including for AOI and SR
- Difficult to get a unique fit
- No modelled R_{SERIES} or R_{SHUNT}

- Neither model is normalised, their coefficients are area dependent and make it difficult to study module variability and degradation.
- Both models predict much more than just P_{MAX}

What is an empirical model?

• It's a simple mathematical model for calculating P_{MAX} as a function of weather inputs

What is an empirical model?

11-Apr-1

• It's a simple mathematical model for calculating P_{MAX} as a function of weather inputs

- It <u>doesn't</u> need any physical understanding
 ☑ it's simple
 ☑ values aren't useful
- It should be able to be fitted by any simple software e.g.
 Excel solver (rather than specialised fitting software)

www.steveransome.com

Simplest empirical model PVUSA with 4-coefficients

(modified: normalised and uses T_{MOD} not T_{AMB} to get a simpler temperature coefficient)

How is an empirical model used?

11-Apr-17

- Determining bad measurement data (out of usual range)
- Interpolation of missing P_{MAX} values
- Instantaneous performance validation
- Predicting performance at given conditions e.g. STC
- Simple energy yield estimation
 Summing predicted P_{MAX} vs. climate data (G_I, T_{MOD} ...)

www.steveransome.com

10 existing models have been studied

Anonymised as Models A .. K (but in a different random order)

- HEYDENRICH
- IEC60891
- LFM2013
- MOTHERPV
- POLYNOMIAL
- **PVCOMPARE**
- **PVGIS**
- PVUSA
- PVUSA+
- SRCL2014

11-Apr-17

• please send any I have missed

10 existing models have been studied

Anonymised as Models A .. K (but in a different random order)

- HEYDENRICH = $Gi*(C1 * C2*Gi*LN(Gi+1) + C3*(LN(Gi+e))^2/(Gi+1)-1))$
- **IEC60891** = IV curve translation (used but equations too complicated to show)
- **LFM2013** = Gi*(C1 +C2*LN(Gi)+C_3*Gi²)*(C4+C5*LN(Gi)+C6*Gi²) simplified LFM
- **MOTHERPV** $= \text{Gi} * (\text{C1} + \text{C2}*\text{Gi} + \text{C3}*\text{Gi}^2 + \text{C4}*\text{LN}(\text{Gi}) + \text{C5}*\text{LN}(\text{Gi})^2)$
- POLYNOMIAL = Gi*(C1 + C2*Gi + C3*Gi² + C4*Gi³ + C5*Gi⁴)
- **PVCOMPARE** = Gi*(C1+C2*Tmod+C3*Tamb+C4*SolAlt+C5*Tmod*Tamb+C6*Tamb²+C7*Tmod²)

www.steveransome.com

- **PVGIS** = $Gi*(1+C1*LN(Gi)+C2*(LN(Gi))^{2}+Tmod*(C3+C4*LN(Gi)+C5*LN(Gi)^{2})+C6*Tmod^{2})$
- **PVUSA** poor fit low light = Gi*(C1 + C2*Gi + C3*dTmod + C4*WS)
- **PVUSA+** = Gi*(C1 + C2*Gi + C3*dTmod + C4*WS) - C 5
- **SRCL2014** = $Gi*(C1*LN(Gi)+C2)*(1-(1-C3)*Gi^2)*C4$

- improved low light fit LLEC, γ , NOCT, P_{MAX} , R_s

please send any I have missed

(Jantr

11-Apr-17

Some dependencies used by models A...K

$$\mathbf{P} = \mathbf{G}_{I} * \sum_{i=1...n} \mathbf{C}_{i} * \mathbf{fn}_{i} (\mathbf{G}_{I}, \mathbf{T}_{MOD}...)$$

•
$$G_{I}$$
 , G_{I}^{2} , G_{I}^{-1}

•
$$\ln(G_{I})$$
, $\ln(G_{I})^{2}$

- \mathbf{T}_{MOD} , \mathbf{T}_{MOD}^2
- \mathbf{T}_{AMB} , \mathbf{T}_{AMB}^2

How many dependencies are mathematically and physically meaningful ?

• SolAlt

11-Apr-1

Also some combinations such as

• $[T_{MOD} * ln(G_{I})]$

(Jantr

• $[\mathbf{T}_{MOD} \star \mathbf{T}_{AMB}]$

www.steveransome.com

Choosing the optimum coefficients for models

www.steveransome.com

- How do PV modules really behave i.e. efficiency as a function of Irradiance and T_{MODULE}?
- Use the Loss Factors Model (6 normalised orthogonal coefficients fitting the IV curve) to find out so we know how and what to model

11-Apr-1

Three LFM coefficients nR_{sc} , nR_{oc} , nV_{oc} cause PR_{Dc} vs. G_{I} nI_{sc} , nI_{MP} and nV_{MP} are "almost constant" with G_{I}

www.steveransome.com

Gantner

instruments

11-Apr-17

How do nR_{sc}, nR_{oc}, nV_{oc} behave for different technologies? **nFF**_R is the product of terms "constant vs. G₁" so can ignore * nV_{oc} $PR_{DC} \propto nR_{SC}$ Note: nRoc * 1.5 1.3 1.3 • nRsc a har som fra strange her her som at 1.2 1.2 1.2 LFM Values ¹⁰⁰⁰ LFM Values 6.0 Values 1 • nRoc Gantner Gantner Z 0.9 nVoc T 0.8 PRdc_T 0.8 0.8 0.7 0.7 0.7 nFFr 0.6 0.6 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 1.1 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 Gi (kW/m²) Gi (kW/m²) Gi (kW/m²)

PR_{DC} vs. G_I is what the Empirical model needs to fit.

a-Si:uc-Si
;ht nR _{sc} pping nV _{oc}

14

www.steveransome.com

Gantner

instruments

11-Apr-17

Modules are characterised by " PR_{DC} vs. Irradiance and T_{MOD} " As used in simulation programs and matrix method IEC 61853

www.steveransome.com

23 Matrix measurement points

11-Apr-1

• 23 points are measured by the matrix method.

 Curves and coefficients are fitted to these

Modules are characterised by "PR_{DC} vs. Irradiance and T_{MOD} " As used in simulation programs and matrix method IEC 61853

% of points / year AZ

11-Apr-1

% of energy yield / year AZ

instruments

16

www.steveransome.com

Fitting some of the models to

normalised efficiency PR_{DC} vs. Irradiance and T_{MODULE}

Best fits to PR_{DC} vs Gi c-SimodelC(Gantner Instruments data)

Best fits to PR_{DC} vs Gi c-Si "Easy to spot differences" for models A', C, D, E and J (Gantner Instruments data)

www.steveransome.com

(Jant

instruments

11-Apr-1

Unphysical effects outside "normal conditions" e.g. 10<T_{MOD}<55 and 0.2<G_I<1

- Flat at low light
- 2 Rising at low temp
- B Gamma rise with GI

Differences

19

4 b differ at low light

SRCL Steve Ransome Consulting Limited

Existing models comparison

- Some have trouble fitting simple data e.g. A
- Most aren't normalised

11-Apr-1

- Some have **unphysical coefficients** e.g. T_{AMB}*T_{MOD}
- Many fit only PR_{DC} vs. G_I (need to correct for temperature * (1+Gamma*(T_{MOD}-25))

Suggest a new model using best features of existing ones

- **Optimise** the choice of coefficient dependencies
- Test it against PV technologies vs. other models

www.steveransome.com

We can improve models by normalising them and making them more "Mechanistic"

Empirical Model

Not normalised. Coefficients scale with array size or module numbers "Meaningless parameters" such as " $T_{AMB}*T_{MOD}$ "

No idea what values mean good performance

e.g. $P_{\text{MEAS}} = G_{I} * \Sigma_{i=1..n} C_{i} * fn_{i} (G_{I}, T_{\text{MOD}})$

Mechanistic Model

11-Apr-17

Normalise coefficients by dividing by reference values e.g. $nV_{oc} = V_{oc.MEASURED}/V_{oc.REFERENCE}$

Now we can more easily compare modules and understand degradation changes

e.g.	$PR_{DC} =$	(P_{MEAS}/P_{NOM})	$'G_{I}) = C_{1} +$	C ₂ *Tmod	+ C ₃ *Ln(Gi)	+ C ₄ *Gi +	<mark>C₅*WS</mark> +	?
		Р	TOLERANCE	GAMMA	LLEC	RS	WIND	
			%	%/К	%@LIC	%@STC	%/(ms-1)	

www.steveransome.com

A simple normalised 6 parameter mechanistic model (L)

PR_{DC} equation

11-Apr-1

- The PR_{DC} is the sum of each of these terms
- Plot on a stacked chart to determine the value of each term and its shape vs. irradiance
- Some terms may be redundant or insignificant e.g. C3 vs. C6

A simple normalised 6 parameter mechanistic model (L)

www.steveransome.com

How many terms are independent? How many are significant?

PR_{DC} vs. irradiance = Sum +ve and -ve coefficients

Gantr

instruments

11-Apr-17

PR_{DC} equation

PR_{DC} vs. Irradiance for different technologies – Model L $PR_{DC} = C_1 + C_2 * dT_{MOD} + C_3 * ln(G_1) + C_4 * G_1 + C_5 * WS + C_6 / G_7$ [1/GI] **dTMOD** 1 Ι ln(Gi) Gi [WS 1

CdTe	c-Si	a-Si:uc-Si
Simple to fit	Worst dTmod coeff	Flattest PR _{DC} vs Irradiance

instruments

Best fits to PR_{DC} vs Gi c-Si for models A, C, D, E and J vs. New Model L (Gantner Instruments data)

New model has sensible looking fit

25

www.steveransome.com

Gantner

instruments

11-Apr-17

Best fits to PR_{DC} vs Gi c-Si for models A, C, D, E and J vs. New Model L (Gantner Instruments data)

Gantner

instruments

11-Apr-17

New model has sensible looking fit

26

www.steveransome.com

Conclusions

- 10 Existing models have been tested
- Empirical models can be difficult to fit and may have meaningless coefficients
- LFM was used to determine optimum coefficients for a new Mechanistic Model (L) which works well

Next steps

11-Apr-1

- Further analysis- more modules, more sites
- Model spectral response, reflectivity and soiling, seasonal annealing
- Show reasons for any degradation
- If you wish to join in please send details of your model and any measurement data
- Thanks for your attention and please get involved!

Data required Setup Location : Lat, Lon, Alt Orientation : Tilt and Azi Module Details : Datasheet Values and Temp Coeffs

Essential : Date+time G₁ Irradiance (by sensor type) T_{AMBIENT} T_{MODULE} Windspeed P_{DC}

Useful to have : I_{DC} and V_{DC} G_{H} , D_{H} G_{N} Spectrum, Rel Hum I_{SC} , V_{OC} , R_{SC} , R_{OC}

www.steveransome.com