EMRP-Project PhotoClass

"Towards an energy-based parameter for photovoltaic classification"

Stefan Winter

The gateway to Europe's integrated metrology community.

SI Unit

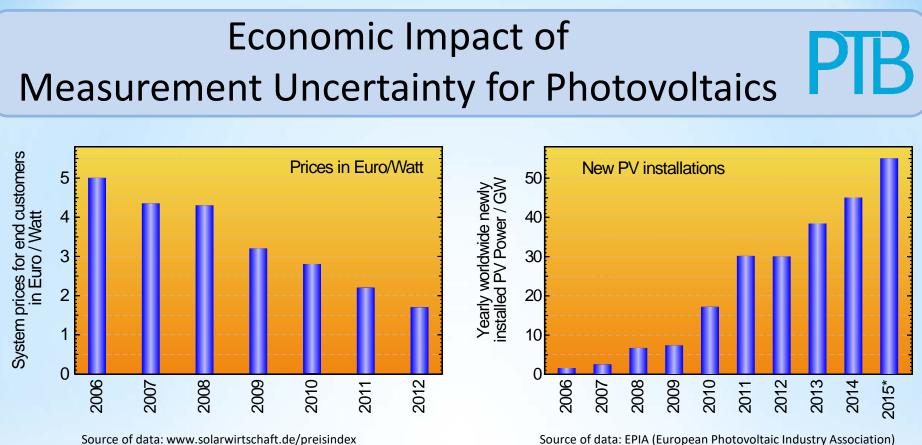
Energy

Health

EUROPEAN METROOF Programme

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union Environment

Fundamental


Industry

- EURAMET's research programmes (EMRP and EMPIR) support the collaboration of European metrology institutes, industrial organisations and academia through Joint Research Projects (JRPs). They are structured around European Grand Challenges in such areas as Health, Energy, the Environment and also aim to progress fundamental science.
- See <u>www.euramet.org</u> for more details.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Source of data: EPIA (European Photovoltaic Industry Association) and for 2015 according to IHS market research institute

- Financial uncertainty = Global annual installation × Price × Uncertainty
- 2012: Financial uncertainty = 30 GW/year × 1.7 €/W × 1 % = 500 M€/year

⇒ A measurement uncertainty of 1% leads to a financial uncertainty of 500 M€/year
 ⇒ High demand for high accuracy solar cell calibrations and realistic standards

Solar parks are financed from banks, who add the financial uncertainty arising from measurement uncertainty to the total amount to be financed. A low uncertainty leads to competitive advantage.

Standard Test Conditions

- Reference solar spectrum AM1,5
- Irradiance $E_{\rm STC} = 1000 \, {\rm W/m^2}$
- Cell-Temperature (25°C)
- Angular distribution
 - Important, but not defined
 - Effect about 10% for cloudy conditions

The STC describes Peak-Power conditions.

Description of AMx

4 Reference solar spectral irradiance distribution

The reference solar spectral distribution AM1.5 is given in Table 1 and Figure 1. This is a total distribution (direct + diffuse) of sunlight, corresponding to an integrated irradiance of 1 000 $W \cdot m^{-2}$ incident on a sun-facing plane surface tilted at 37° to the horizontal considering the wavelength-dependent albedo of a light bare soil, under the following atmospheric conditions:

- U.S. Standard Atmosphere with CO₂ concentration increased to current level (370 ppm), a rural aerosol model, and no pollution;
- precipitable water: 1,4164 cm;
- ozone content: 0,3438 atm-cm (or 343,8 DU);
- turbidity (aerosol optical depth): 0,084 at 500 nm;
- pressure: 1013,25 hPa (i.e., sea level).

Data contained in Table 1 have been generated using the solar spectral model SMARTS, Version 2.9.2. A general description of this model and its suitability to reproduce actual solar spectral irradiance distributions can be found in "Proposed Reference Irradiance Spectra for

Why 37° instead of 48.2°? Mean value of 49° (latitude border between USA and Canada) and 25° (latitude of south end of Florida)

Standard Test Conditions

- Reference solar spectrum AM1,5 Will be reached only up to two times a day. In the evening the spectrum is more red, during noon and at cloudy days the spectrum is more blue.
- Irradiance E_{STC} = 1000 W/m²
 Only during summer time reachable
- Cell-Temperature (25°C):
 - Perfect for tests with a flasher during production,
 - Unrealistic for real world application
- Angular distribution important, but not defined

Further reasons for a new metric

- o €50 billion annual market for PV, with strong future growth
- Sales currently based on "watts-peak" for conditions that are never achieved in operation, while the most important parameter for investors is energy yield
- Financial success of installations depends on energy generation rather than power values and there are cases that lower efficiency devices produce more energy

Focus on "watts-peak" can distort R&D efforts

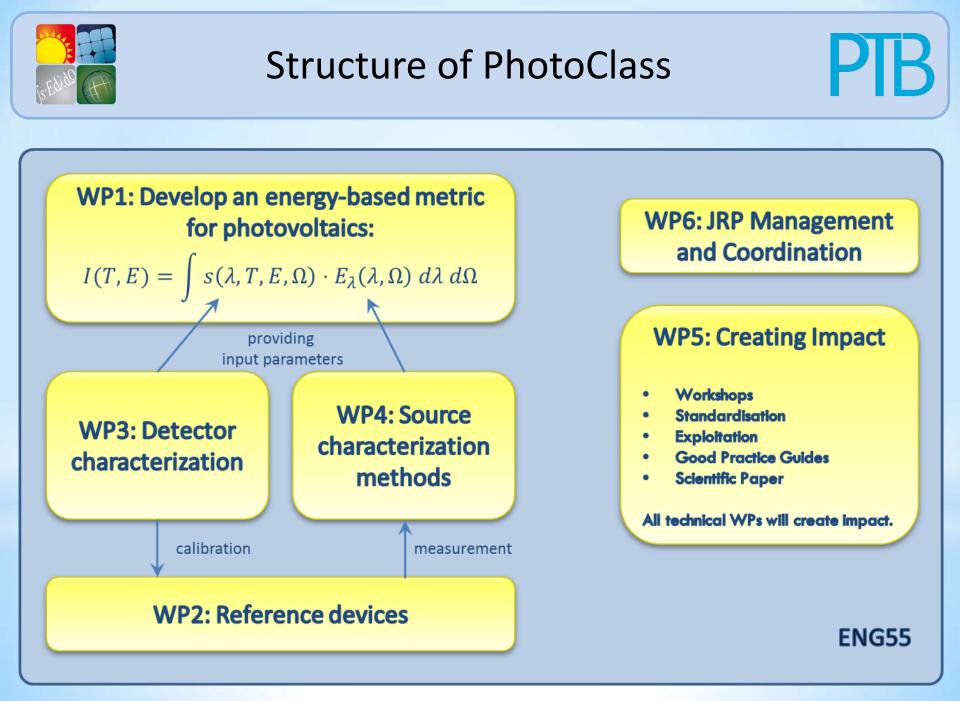
 Currently available metrology does not enable (judicial) expert assessors to clarify defects within the scope of warranty.

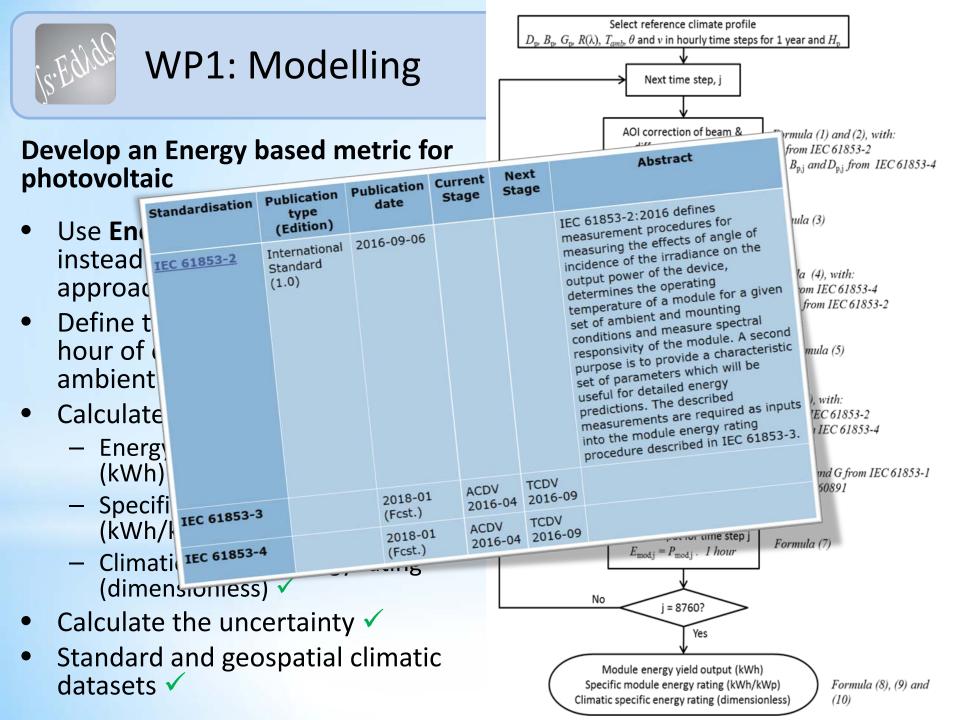
Consortium of PhotoClass Funded Partners (NMI, EU): Physikalisch-Technische Bundesanstalt European Braunschweig und Berlin Commission ES N Centre for meti **National Physical Laboratory** Le progrès, une passion à partager

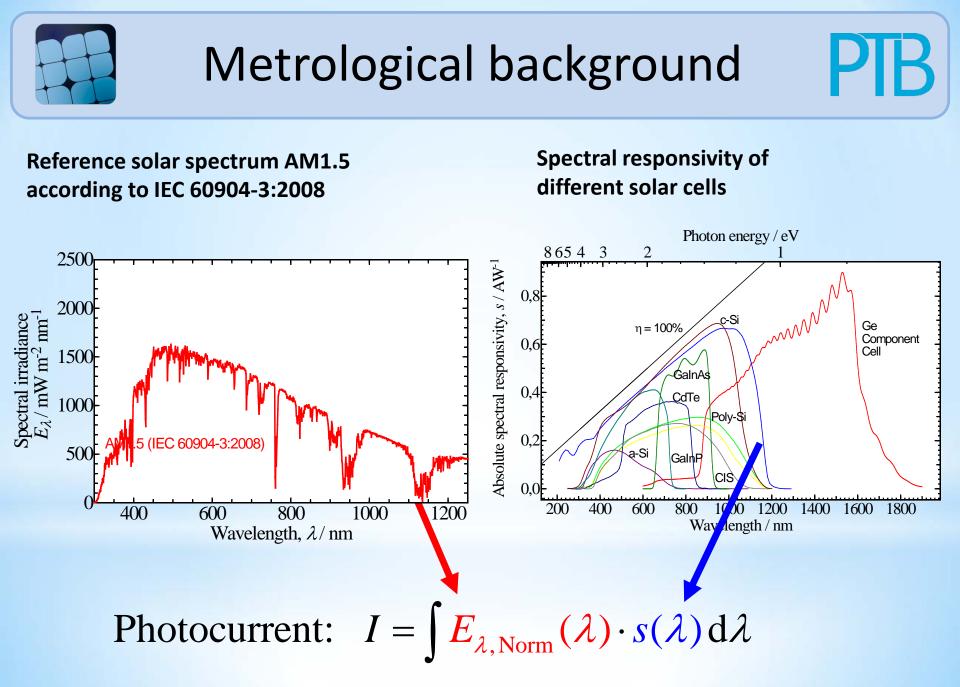
Unfunded Partners (Industry):

Scuola universitaria professionale della Svizzera italiana

SUPSI


TÜVRheinland[®] Genau. Richtig.

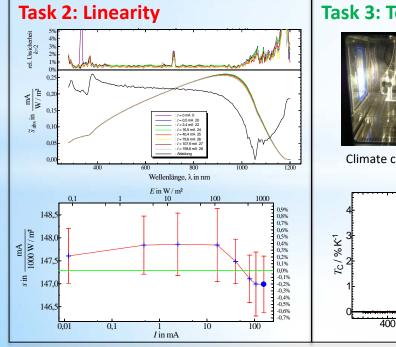

REGs (Universities, Research Institutes)

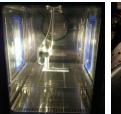

WP2: Reference devices

- Definition of required specs and selection of reference devices ✓
- Development and optimization of new reference devices
- Validation of various improved calibration / characterization methods: Comparison ongoing

Good News Story:

New Reference devices of Fraunhofer ISE are commercially available. Within the WP 2 new reference devices are developed. The aim of this work package is to develop new PV reference devices that exhibit device stability of better than 0.1 %, and provide a wider coverage of operating spectral range and linearity. Additional filtering is used to match the spectral response to various cell technologies. A set of new cell technologies based on ntype silicon cells are selected to be used. The WPVS housing was improved regarding manufacturing, with additional options for shunted outdoor cells for quality assurance. Additionally the thermal conduction of the cell in the WPVS housing was improved. All this improvements are included in the available version of the WPVS reference elements.


EU PVSEC student award goes to REG(LU)



Task 1: New techniques:

- Compressed sensing method (NPL) ✓
- Polychromatic method (REG(LU)) ✓
- Wavelength traceability via FTS (PTB) ✓ ٠
- Supercontinuum Laser SR-facility (VSL) ✓ •

Task 3: Temperature

Temperature coeffizient

800

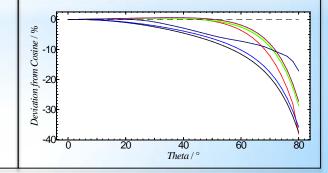
Wavelength, λ / nm

600

Climate chambers

Solar cell chuck

1000


1200

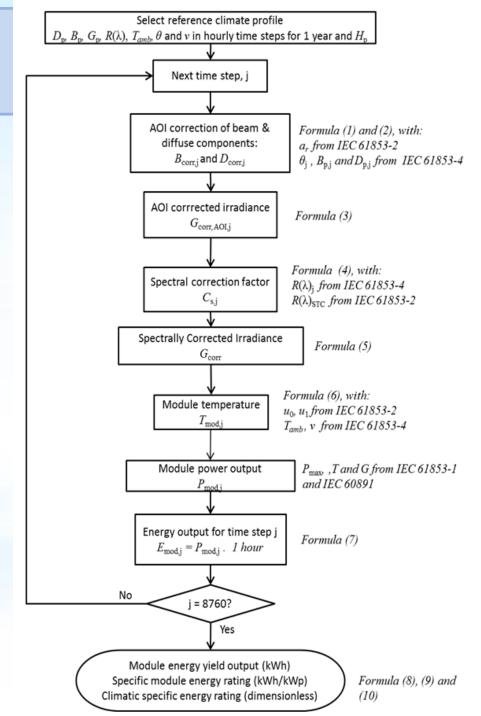
outdoor

WP4: Source characterisation

- Characterization of the solar spectrum,
 Spectral Sky Scanning ✓
- Spectral characterization of pulsed solar simulators
- Characterization of LED based solar simulator ongoing
- Simultaneous uniformimeter based on photodiode array ongoing
- Uncertainty of spectral measurements ✓

WP5: Impact

							Abstract		
0	Draft stan	danal .	Publication	Current	Next				
	Standardisation	Publication type	date	Stage			61853-2:2016 defines		
	•	(Edition)			1	IEC	asurement procedures for easurement procedures for the effects of angle of		
		International	2016-09-06			me	easuring the irradiance on the		
0	IEC 61853-2	Standard				ind	cidence of the device,		
0	•	(1.0)				de	etermines the open adule for a given		
	Ir					te	emperature of and mounting		
							andifions dive the A SPLUIN		
0	G						esponsivity of the a characteristic		
	_						set of parameterilad energy		
0	Ex								
	ce						a applicements and a sting		
							into the module energy rating procedure described in IEC 61853-3.		
0	The						eded		
	pre		2018-01	ACD	•	CDV 2016-09			
	IEC 61853-3	3	(Fcst.)	2010		TCDV			
0	C		2018-0	1 ACD 201	6-04		anes Directive		
0	Sup 1EC 61853-	4	(Fcst.)						

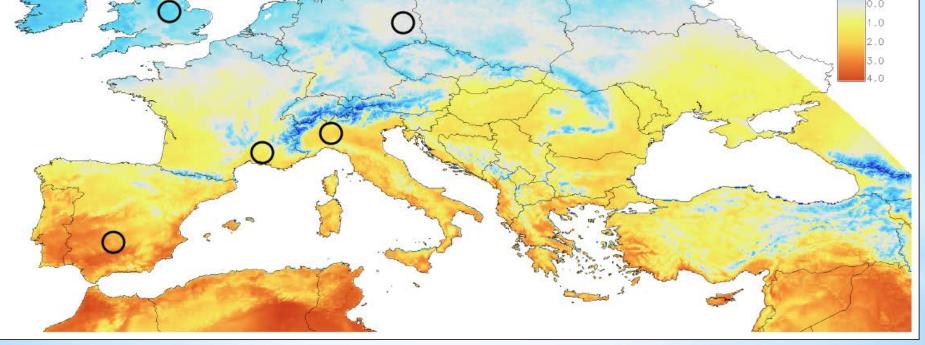

http://photoclass.ptb.de

IEC 61853 Part 3

Provides formulas for Energy rating:

- In-plane global irradiance corrected for angular incidence effects
- Spectrally corrected global inplane irradiance
- Calculation of module
 temperature, depending on irradiance, ambient
 temperature and wind speed

IEC 61853 Part 4



Starting with one standard reference climatic profile

	А	В	С	D	E	F	G	Н		J	K	L	5
1	Day in Year		Sun elevation (degrees)	Sun incidence angle	Wind speed	Ambient temperature	Direct Normal Irradiance	Global horizontal irradiance	Global in- plane irradiance	Direct in- plane irradiance	Spectral irradiance 306.8- 327.8nm	327.8- 362.5nm	362. 407.
4273	178	23	· • ·	0,000	1,596	15,320	0,000	0,000		0,000		0,000	
4274	179	0		0,000	3,427	13,840	,	0,000		0,000	,	0,000	
4275	179	1	0,000	0,000	3,234	13,160	,	0,000		0,000		0,000	
4276	179	2	0,000	0,000	3,035	12,480		0,000		0,000	0,000	0,000	
4277	179	3	0,000	0,000	2,843	11,800	0,000	0,000	0,000	0,000	0,000	0,000	
4278	179	4	0,000	0,000	3,093	12,220	0,000	0,000	0,000	0,000	0,000	0,000	
4279	179	5	8,832	0,379	3,358	12,640	127,659	68,100	52,216	0,846	0,006	0,993	
4280	179	6	18,998	13,013	3,641	13,060	415,326	235,200	188,904	93,522	0,423	4,183	
4281	179	7	29,611	26,065	3,171	15,410	578,218	416,900	383,378	254,062	1,330	8,387	
4282	179	8	40,374	39,395	2,717	17,750	662,884	588,100	582,583	420,705	2,549	12,915	
4283	179	9	50,902	52,909	2,272	20,100	505,110	666,700	682,589	402,917	3,614	16,064	
4284	179	10	60,487	66,541	1,361	21,280	788,403	861,200	910,144	723,238	5,018	20,832	
4285	179	11	67,499	80,230	0,470	22,450	859,642	946,600	1012,948	847,175	5,856	23,389	
4286	179	12	68,957	85,942	0,482	23,630	745,623	923,000	985,680	743,754	5,860	23,143	
4287	179	13	63,885	72,272	0,378	23,380	516,084	802,600	839,761	491,577	5,112	20,450	
4288	179	14	55,094	58,608	0,394	23,120	529,086	737,600	762,403	451,641	4,346	18,262	
4289	179	15	44,842	45,037	0,528	22,870	390,271	581,100	582,242	276,143	3,069	14,034	
4290	179	16	34,119	31,620	0,511	22,240	175,961	373,700	363,159	92,255	1,695	8,916	
4291	179	17	23,405	18,439	0,555	21,610	16,615	162,800	158,836	5,255	0,587	3,908	
4292	179	18	13,017	5,609	0,640	20,980	0,000	55,200	53,850	0,000	0,110	1,220	
4293	179	19	3,248	0,000	0,931	19,640	0,000	27,500	26,267	0,000	0,000	0,375	
4294	179	20	0,000	0,000	1,361	18,310	0,000	0,000		,	0,000	0,000	
4295	179	21	0,000	0,000	1,836	16,970	0,000	0,000	0,000	0,000	0,000	0,000	

Altogether: 24x365 = 8760 lines and 39 columns

Map of difference in MPR between CdTe and c-Si modules, given in percentage points.

T. Huld et al: "Photovoltaic Energy Rating Data sets for Europe " in Solar Energy

- More detailed look at spectral and angular dependent radiance of sky and their effect on energy rating
- Simultaneous hyperspectral sky measurement instead of sky scanning
- Comparison with satellite data and extrapolation to historical data

Hot topic at standardisation meetings of IEC:

- Metrological assessment of bifacial solar modules
- Open questions:
 - How to define and to measure the bifacial gain and bifaciality
 - How much does it depend on module properties and how much on installation conditions
 - How to measure STC power,
 e.g. from one side in production and from two side in laboratory, what are the effects
 - How much does the yield depend on: STC power, module properties, tilt angle, height, albedo, mounting structure, surrounding of the module (stand alone module, solar park)
- BIPV Questions

Hot topic at standardisation meetings of IEC:

- Metrological assessment of bifacial solar modules
- Two new standards needed:
 - Standard test conditions (STC): e.g. IEC 60904-1-2
 - Energy rating, e.g. IEC 61853-5